

## ENERGY HARVESTING TRANSDUCERS - ELECTROSTATIC (ICT-ENERGY SUMMER SCHOOL 2016)

Shad Roundy, PhD

Department of Mechanical Engineering University of Utah <u>shad.roundy@utah.edu</u>



#### Three Types of Electromechanical Lossless Transduction

- 1. <u>Electrodynamic</u> (also called <u>electromagnetic</u> or inductive): motor/generator action is produced by the current in, or the motion of an electric conductor located in a fixed transverse magnetic field (e.g. voice coil speaker)
- 2. <u>Piezoeletric</u>: motor/generator action is produced by the direct and converse piezoelectric effect dielectric polarization gives rise to elastic strain and vice versa (e.g. tweeter speaker)
- **3.** <u>Electrostatic</u>: motor/generator action is produced by variations of the mechanical stress by maintaining a potential difference between two or more electrodes, one of which moves (e.g. condenser microphone)

Credit: This classification and much of the flow from Electromagnetic section is based on the 2013 PowerMEMS presentation by Prof. David Arnold at the University of Florida



#### **Outline for Short Course**

- Introduction and Linear Energy Harvesting
- Energy Harvesting Transducers
  - Electromagnetic
  - Piezoelectric
  - Electrostatic
- Wideband and Nonlinear Energy Harvesting
- Applications



# FUNDAMENTALS OF ELECTROSTATIC TRANSDUCTION



## **Basic Capacitor Relationship**

For a parallel plate capacitor



$$C = \frac{\epsilon A}{d}$$

 $U = \frac{1}{2}CV^2 = \frac{Q^2}{2C}$ 

where  $\epsilon$  is the permittivity between the plates (usually air  $\epsilon_0 = 8.85x10^{-12}$ ), V is the voltage across the plates, and Q is the charge stored on the plates (Q = CV).

If capacitance changes due to external excitation, the energy stored in the capacitor will change, and this energy can be harvested.



## Three Types of Electrostatic Harvesters





# Energy Conversion Cycles Voltage Constrained



(1) – (2) Capacitor charged at  $C_{max}$  to  $V_{max}$ .

(2) – (3) Voltage held at  $V_{max}$  while capacitance reduces to  $C_{min}$ . Charge is either returned to voltage source or to an external circuit.

(3) – (1) Remaining charge recovered at capacitance of  $C_{min}$ .

$$E_{1231} = \frac{1}{2} (C_{max} - C_{min}) V_{max}^2$$



# Energy Conversion Cycles Charge Constrained



(1) – (2') Capacitor charged at  $C_{max}$  to  $V_{in}$ .

(2') - (3) Capacitor is open circuit (constant charge) while capacitance reduces to C<sub>min</sub>. In order for charge to remain the same, voltage on capacitor increases to V<sub>max</sub>.

(3) – (1) Charge is recovered at much higher voltage ( $V_{max}$ ) and therefore higher energy than it was injected.

$$E_{12'31} = \frac{1}{2} (C_{max} - C_{min}) V_{max} V_{in}$$
$$E_{1231} = \frac{1}{2} \left( \frac{1}{C_{min}} - \frac{1}{C_{max}} \right) Q_0^2$$



## Some Variable Capacitance Structures

Interdigitated Comb Fingers Gap Closing



#### Interdigitated Comb Fingers Changing Overlap





## Some Variable Capacitance Structures

In plane, overlapping area harvester with patterned electrodes





## Some Intermediate Comments

- Natural for implementation in silicon MEMS where variable capacitance structures are common
  - But, proof mass is extremely low, so power is usually very low
- Energy densities are usually low due to the low permittivity of air unless the voltages are very high
- Needs some sort of rechargeable battery to prime the capacitor, or quite complicated control circuitry
- So, recently, electret based harvesters have become much more common



## Electrets

- "Electret is a dielectric material that has a quasipermanent electric charge or dipole polarisation. An electret generates internal and external electric fields, and is the electrostatic equivalent of a permanent magnet." - Wikipedia
- Electrets are characterized by their surface charge density and stability over time
- SiO<sub>2</sub> forms an electret with very high surface charge density, but its stability over time is a concern
- Perfluorinated polymers provide better stability
- CYTOP (Asahi Glass Co.) has become a highly used electret material for this application



#### Electrets



Figure 9. Standard electrets for electret-based electrostatic converters (a) dipole orientation and (b) charge injection



Figure 10. Corona discharge device (a) principle and (b) photo (CEA-LETI)

S. Boisseau, G. Despesse and B. Ahmed Seddik, Electrostatic Conversion for Vibration Energy Harvesting, Small-Scale Energy Harvesting, Intech, 2012



## **Example Electret Properties**

| Electret         | Max thickness<br>(μm) | Relative<br>permittivity | Charge density<br>[mC/m <sup>2</sup> ] | Surface<br>voltage @ max<br>thick |
|------------------|-----------------------|--------------------------|----------------------------------------|-----------------------------------|
| Teflon           | 100                   | 2.1                      | 0.1 – 0.25                             | ~ 600                             |
| Si0 <sub>2</sub> | 3                     | 4                        | 5 – 10                                 | ~ 500                             |
| Parylene         | 10                    | 3                        | 0.5 - 1                                | ~ 200                             |
| CYTOP            | 20                    | 2                        | 1 - 2                                  | ~ 1000                            |

Adapted from S. Boisseau, G. Despesse and B. Ahmed Seddik, Electrostatic Conversion for Vibration Energy Harvesting, Small-Scale Energy Harvesting, Intech, 2012



#### **Electret Harvester – Operating Principles**



Figure 13. Electret-based electrostatic conversion - Concept



Figure 14. Electret-based electrostatic conversion - Charge circulation

S. Boisseau, et. al. Small-Scale Energy Harvesting, Intech, 2012



#### **Electret Equivalent Circuit**



Figure 15. Electrical equivalent model of electret-based electrostatic converters

S. Boisseau, et. al. Small-Scale Energy Harvesting, Intech, 2012



### **Electret Harvester Theory**

The governing equation for this circuit is:

$$\frac{dQ_2}{dt} = \frac{1}{1 + \frac{C_p}{C(t)}} \left[ \frac{V_s}{R} - Q_2 \left( \frac{1}{RC(t)} - \frac{C_p}{C(t)^2} \frac{dC(t)}{dt} \right) \right]$$

where  $C_p = C_{par}$  is the parasitic capacitance

This can be re-written in terms of load voltage, V. (Note, this written as U in the figure, which is confusing so I use V.)

$$\frac{dV}{dt} = -\frac{1}{C_p + C(t)} \left[ V\left(\frac{1}{R} + \frac{dC(t)}{dt}\right) - \frac{dC(t)}{dt} V_s \right]$$

The power is then just:

$$P_{rms} = \frac{1}{2} \frac{|V|^2}{R}$$



Note: electrets are sometimes characterized by surface voltage ( $V_s$ ) as in the equations above, and sometimes by charge density,  $\sigma$ , where  $V_s = \frac{\sigma d}{\epsilon \epsilon_0}$ .

where d is the thickness of the electret, and  $\epsilon$  is the relative permittivity of the electret material.



#### **Electret Harvester Mechanics**

Electrostatic force will act to minimize energy in the system, or maximize capacitance.

$$F_e = -\frac{d}{dz}(W_{elec}) = -\frac{d}{dz}\left(\frac{1}{2}C(z)(V(z) - V_s)^2\right)$$

where  $W_{elec}$  = electrostatic force, V(z) = load voltage as a function of position



#### **Electret Harvester Mechanics**

Remember from Linear VEH theory

$$m\ddot{z} + (b_m + b_e)\dot{z} + kz = -m\ddot{y}$$

where  $b_e \dot{z}$  is the electrically induced force. Substituting:

$$m\ddot{z} + b_m\dot{z} + F_e + kz = -m\ddot{y}$$

And the governing equations for the system are:

$$m\ddot{z} + b_m \dot{z} - \frac{d}{dz} \left( \frac{1}{2} C (V - V_s)^2 \right) + kz = -m\ddot{y}$$
$$\dot{V} = -\frac{1}{C_p + C} \left[ V \left( \frac{1}{R} + \frac{dC}{dt} \right) - \frac{dC}{dt} V_s \right]$$

This must be solved numerically as a simple expression for C(z) is often not available.



#### **Capacitance** Expressions

Example 1, gap closing oscillator:

$$C(z) = \frac{\epsilon_0 A}{z + g + \frac{d}{\epsilon}}$$

where A is the total maximum electrode overlap area, g is the thickness of the air gap, and d is the thickness of the electret, z is the displacement of counter electrode.



S. Boisseau, et. al. Small-Scale Energy Harvesting, Intech, 2012

$$\frac{dC(z)}{dz} = \frac{-\epsilon_0 A}{\left(z+g+\frac{d}{\epsilon}\right)^2}$$
$$F_e = \frac{1}{2} \frac{\epsilon_0 A}{\left(z+g+\frac{d}{\epsilon}\right)^2} (V-V_s)^2$$



## **Capacitance Expressions**

Example 2, overlapping area patterned electrodes:

The maximum capacitance is:

$$C_{max} = \frac{\epsilon_0 A}{g + \frac{d}{\epsilon}}$$

where A is the total maximum electrode overlap area, g is the thickness of the air gap, and d is the thickness of the electret.

See Boisseau et. al. 2012 for a discussion of minimum capacitance for the common overlapping area with patterned electrode architecture.

$$C(z) = \frac{C_{max} + C_{min}}{2} + \frac{C_{max} - C_{min}}{2} \cos\left(\frac{\pi}{w}z\right)$$

where *w* is the pitch width





## **Capacitance Expressions**

Example 2, overlapping area patterned electrodes:

$$\frac{dC(z)}{dz} = -\frac{\pi}{2w}(C_{max} - C_{min})\sin\left(\frac{\pi}{w}z\right)$$



And:

$$F_e = -\frac{\pi}{4w} (C_{max} - C_{min}) \sin\left(\frac{\pi x}{w}\right) (V - V_s)^2$$





## ELECTROSTATIC HARVESTER DEVICES

#### Rotational Harvester - Boland - 2005



Boland J., Micro electret power generators. PhD thesis. California Institute of Technology. 2005



# Another Rotational Harvester – Nakano and Suzuki - 2015

#### Nakano, Komori, Hattori, Suzuki, PowerMEMS 2015



Figure 1. Schematic of rotational electret energy harvester.



Figure 4. MEMS rotational electret energy harvester. A ball bearing is successfully installed its housing etched into the Si substrate. a) Rotor and stator substrate with a ball bearing, b) Rotational energy harvester stored in a plastic package.



#### Vibration Harvester- Y. Suzuki



Figure 11. In-plane electret generator with a high-aspect-ratio parylene spring.

#### Suzuki et. al. JM&M, 2010



**Figure 14.** Backside of the top Si structure. (*a*) Overview, (*b*) high-aspect-ratio parylene spring and (*c*) SEM image of the parylene spring.



Figure 15. Bottom substrate. (a) Overview, (b) magnified view of the electret and the electrodes in the dual-phase arrangement.



## OMRON





OMROM device has among the highest reported effectiveness ( $E_H = \frac{P}{P_{VDRG}}$ ), of around 30-40%.

#### http://techon.nikkeibp.co.jp/english/NEWS\_EN/20081117/161303/



#### Vibration Harvester - Boisseau



S. Boisseau, et. al. Small-Scale Energy Harvesting, Intech, 2012



## Ferrofluidic Electrostatic – Galchev





Galchev, Raz, and Paul, PowerMEMS 2012



## Ferrofluidic Electrostatic – Kruupenkin



Krupenkin and Taylor, Nature Communications, 2012



## Summary

- Electrostatic energy harvesters based on an air gap, with no electret have low energy density
- Electret based harvesters have energy densities on par with electromagnetic and piezoelectric
- Well suited to MEMS implementation
- Voltages high enough to be easily conditioned
- Fabrication and balancing of electrostatic forces can be a challenge

